
TapID: Rapid Touch Interaction in Virtual Reality using Wearable Sensing
Manuel Meier* Paul Streli∗ Andreas Fender∗ Christian Holz∗

Department of Computer Science
ETH Zürich, Switzerland

a b c d

Figure 1: TapID is a wrist-worn device that detects taps on surfaces and identifies the tapping finger, which, combined with tracked
hand poses, triggers input in VR. (a) The user is wearing two TapID bands for (b) touch interaction with surface widgets in VR, e.g.,
for text input, web browsing, or (c) document authoring using familiar front-end apps. (d) Widgets can also be registered to the body
itself, using TapID to detect on-body taps and identify the tapping finger, here to rotate an image held in hand.

ABSTRACT

Current Virtual Reality systems typically use cameras to capture user
input from controllers or free-hand mid-air interaction. In this paper,
we argue that this is a key impediment to productivity scenarios in
VR, which require continued interaction over prolonged periods of
time—a requirement that controller or free-hand input in mid-air
does not satisfy. To address this challenge, we bring rapid touch
interaction on surfaces to Virtual Reality—the input modality that
users have grown used to on phones and tablets for continued use.
We present TapID, a wrist-based inertial sensing system that com-
plements headset-tracked hand poses to trigger input in VR. TapID
embeds a pair of inertial sensors in a flexible strap, one at either side
of the wrist; from the combination of registered signals, TapID reli-
ably detects surface touch events and, more importantly, identifies
the finger used for touch. We evaluated TapID in a series of user
studies on event-detection accuracy (F1 = 0.997) and hand-agnostic
finger-identification accuracy (within-user: F1 = 0.93; across users:
F1 = 0.91 after 10 refinement taps and F1 = 0.87 without refinement)
in a seated table scenario. We conclude with a series of applica-
tions that complement hand tracking with touch input and that are
uniquely enabled by TapID, including UI control, rapid keyboard
typing and piano playing, as well as surface gestures.

Index Terms: Human-centered computing—Human com-
puter interaction (HCI)—Interaction paradigms—Virtual reality;
Human-centered computing—Human computer interaction (HCI)—
Interaction techniques—Gestural input

1 INTRODUCTION

The latest Mixed Reality systems incorporate hand pose recognition
for input detection, for Augmented Reality (e.g., Hololens 2) and
Virtual Reality (e.g., Quest 2) alike. While previous device gen-
erations had largely relied on hand-held controllers for input, the

*e-mail addresses: firstname.lastname@inf.ethz.ch

transition to controller-free, hand pose and gesture-operated input is
apparent, both in the research communities (e.g., [47]) as well as the
commercial domain (e.g., [11, 12, 33]).

In Augmented Reality, hand tracking is well-suited to accompany
the work on physical objects, for example in maintenance and re-
pair [21] or manufacturing and assembly [42]. Working on physical
objects allows the user to hold onto something, thus preventing fa-
tigue during use [22]. In contrast, for the interaction with objects in
Virtual Reality, where content is intangible outside passive haptics
systems (e.g., [9,24,30]), free-hand interaction can become a burden
once it exceeds quick interactions [25].

In this paper, we propose moving all direct interaction in VR to
passive surfaces. Compared to mid-air interaction, touch interaction
on surfaces provides users with an opportunity to rest their arms
between interactions while simultaneously offering physical support
during prolonged interactions. At the same time, the surface provides
haptic feedback alongside a frame of reference for proprioception,
affording quick and precise interaction.

The core challenge of touch interaction in VR systems is the
precise detection of touch events; because hands are tracked from
the head-mounted systems themselves, this single vantage point can
lead to inaccuracy in depth sensing and thus make touch/no-touch
discrimination and contact locating [2] challenging. A variety of ap-
proaches have been proposed to detect touch on surfaces using depth
cameras, for example for stationary [46] and headset-integrated sys-
tems [47]. To combat noise in-depth measurements, they integrate
filters for reliable touch detection and rejection. Both, adding filters
as well as the framerate of the used camera inherently limit the speed
of interaction that systems can reliably detect.

We address the challenge of reliable and quick touch detection
with our band TapID, which users wear around their wrist. Through
built-in inertial sensors, TapID does not just detect touch events on
passive surfaces but additionally identifies the finger used for touch.
TapID thus complements the headset’s optical tracking of hands and
fingers, with which we combine TapID’s detected touches to trigger
input events in VR. Our approach, therefore, allows applications and
interaction modalities known from tablets and phones to seamlessly
and reliably transfer to VR scenarios.

https://www.christianholz.net
https://siplab.org
https://siplab.org/team
https://siplab.org/projects/TapID

a b

Figure 2: TapID’s sensing principle. The user interacts through
touches on the table. (a) TapID detects the occurrence of a tap
and identifies the tapping finger, while the VR headset tracks fingertip
positions. (b) A tap is mechanically propagating through the hand and
is registered by TapID’s dual-IMU sensor, here identifying the thumb.

1.1 Rapid touch interaction on passive surfaces in VR
Figure 1 shows an overview of our approach. Here, a user is inter-
acting through freehand gestures in VR, while TapID supplies the
tracking signals for finger touches on the table in front of them. The
user thereby wears one TapID band on either wrist, which streams
inertial events to a PC for tap detection and finger identification.

Simultaneously, the VR headset tracks the wearer’s hands using
built-in vendor algorithms that process the headset’s camera feeds.
Our system then obtains the 3D-tracked hand poses from the headset
for both hands when they are in the view frustrum.

When TapID detects tap events through the inertial sensors, our
system forwards the input event to the VR application. After ver-
ifying whether the user’s hands are within proximity of a passive
surface such as a table, our VR app then trigger an input event at the
corresponding finger’s location. If the user’s hands are not close to a
surface, our system simply rejects the event detected by TapID as
inadvertent input and ignores it.

Figure 1b shows an application that particularly benefits from
our approach: a keyboard that affords rapid and reliable text entry
using all ten fingers. Upon typing on the keyboard, our system
forwards all key input to the operating system for text processing
and retrieves word suggestions that the user may select—similar
to how they would interact on a regular touch tablet. Our system
integrates a browser interface and forwards all input to the renderer,
so that any web application such as search engines, word processors,
or presentation apps can become usable through touch in VR using
TapID. As shown in Figure 1c, Microsoft PowerPoint is running in
VR and supports all the functionality users would expect from touch
interfaces, such as tapping to place the cursor, double-tapping to
select a word, tool buttons, etc. Finally, Figure 1d shows an example
application that uses the user’s own body for input affordances, for
example when passive surfaces around the user are absent. Here,
menus and other interactive elements are registered with the user’s
arm, tracked by the headset, and a tap on the body delivers input to
the UI elements, as it is picked up and processed by TapID.

Figure 2 illustrates our sensing principle. The elastic silicone-
based strap embeds our SoC platform that connects to two accelerom-
eters, one on either side of the wrist. The accelerometers mechani-
cally couple to the wearer’s skin and wrist bones through the strap
and, thus, pick up body-coupled vibration signals. During each tap
event, the inertial sensors register slightly different vibration signals
due to the propagation path through the user’s hand depending on
the finger they originate from. These differences are subtle yet sys-
tematic as shown in Figure 3, and they are the source of our signal,
which TapID analyzes using a machine-learning pipeline to detect
taps and identify the tapping finger.

In our user study, we evaluated TapID’s performance of tap event
detection and finger identification with 18 participants. TapID reli-
ably detected tap events (F1,tap = .996) and reliably identified the

thumb

0.0

–0.1

0.1

0.2

0.0

–0.1

0.1

0.2

0 15 30 0 15 30 0 15 30 0 15 30 0 15 30

ac
ce

le
ro

m
e

te
r

rig
ht

le
ft

index middle ring pinky

time (ms) time (ms) time (ms) time (ms) time (ms)

x
y
z

Figure 3: Overlaid inertial measurements from the IMUs on the left
and right side of the wrist, respectively, for 30 sample taps caused by
each of a user’s 5 fingers of the right hand.

tapping finger (cross-session F1,finger = .93, cross-person with refine-
ment F1,finger = .91, cross-person without refinement F1,finger = .87).

We compared our results to the performance of our method run-
ning on a rigid and board-mounted dual-accelerometer configuration
(e.g., found in FITBIT bands, such as Charge [43]), where it achieved
comparable accuracies for tap detection F1,tap = .996 and worse
but still useful finger identification (cross-session F1,finger = .92,
cross-person with refinement F1,finger = .89, without refinement
F1,finger = .80). We also evaluated our prototype in a traditional
SMARTWATCH configuration with only a single board-mounted ac-
celerometer. This setup achieved comparable results to the FITBIT
for both tap detection (F1,tap = .996) and finger identification (cross-
session F1,finger = .91, cross-person with refinement F1,finger = .89,
without refinement F1,finger = .81). These promising results, particu-
larly in the configuration of existing wearable devices, validate our
method for the practical use in VR scenarios.

1.2 Contributions
We make three main contributions with our work. 1) We introduce a
wrist-based sensing principle to detect surface touches and to iden-
tify the finger that has caused a touch through a dual-accelerometer
configuration integrated into a watch strap. 2) We demonstrate our
prototype implementation TapID that processes and classifies input
events in real-time using a machine-learning pipeline. The detected
and classified events are then forwarded to our VR system that com-
bines them with the hand posed tracked in 3D by the headset to
trigger input in VR. 3) In a technical evaluation with 18 partici-
pants, we assess TapID’s performance in detecting tap events and
correctly identifying fingers. We thereby compare TapID in three
configurations: the proposed dual-IMU implementation on the wrist
strap, a dual-IMU sensor rigidly mounted on the board (FITBIT),
and a single on-board accelerometer (SMARTWATCH), investigating
accuracies cross-session and cross-person. Notably, we demonstrate
that our method is neither person-specific nor hand-specific.

Collectively, these contributions highlight the promise of touch
interaction in VR, using the input modality that is familiar from
tablet and phone devices, but extending and integrating it into the
spatial user interfaces common in VR. We believe that our method
has the potential to bring prolonged interaction to VR in the con-
text of creativity and productivity scenarios, where reliable, precise,
and non-fatiguing input takes precedence over the shorter and often
whole-body engaging interactions that have already proven success-
ful in the context of games and entertainment.

2 RELATED WORK

TapID is related to efforts on input event detection, particularly using
wearable sensors, finger identification, and VR interaction.

2.1 Wearable sensors and body-coupled events
Several projects have investigated body-coupled mechanical events
for interaction. Approaches mainly differ in the origin of such events,

https://siplab.org/projects/TapID

varying between events that result from hand-held tools, repetitive
motions during an activity, contact with passive affordances, and
mechanical events caused by tapping one’s own body.

Inertial measurement units (IMUs) are frequently used to detect
human motion and activity due to their integration into phones and
wearable devices [44]. For example, Viband operates the IMU in
a watch at a high sample rate to detect handheld tools and manual
activities [32]. With the emergence of neural network-based process-
ing pipelines, various network architectures have been presented for
such recognition [27, 36, 37, 50], which has started to supersede the
previously hand-crafted features (e.g., [13, 26].

To sense explicit interaction with passive affordances, IMUs and
microphones have been used to detect touch events (e.g., [6, 18]),
which can be spatially localized on the surface using multiple sensors
(e.g., [16, 38]). Researchers have also examined body locations for
their suitability to mount sensors, such such as fingers (e.g., [18,51]),
knuckles (e.g., [1, 35]), or the wrist (e.g., [6, 16]).

Other projects have instead researched tap detection on the user’s
own body. Such projects often involve sensors arrays to detect bio-
acoustic waves and are mounted on the forearm (e.g., for forearm
and hand taps [20]) or the wrist (e.g., for taps on finger knuckles and
other body parts [8, 49]). Beyond tap events, AudioTouch uses two
piezoelectric elements on the back of the hand to resolve touch force
and classifies 12 hand poses during touch [31]. Similar to TapID,
Actitouch complements VR interaction to detect touch input on the
body [52], using a wearable with skin contact to modulate an RF
signal onto the body that a receiver picks up to detect on-body touch,
while the headset supplies locations through hand tracking.

2.2 Finger identification during touch

Several efforts have shown the relevance of finger identification dur-
ing interaction. On optical tabletops, such efforts used fiducial mark-
ers [34] for finger-specific UI control or fingerprint scanning [23] for
authentication during interaction. Gupta and Balakrishnan instead
mounted optical sensors to the fingertips to distinguish two fingers,
using the new capability to shrink touchscreen keyboards in half and
overloading each key with two letters for finger-specific input.

Body-worn IMUs are capable of finger identification when
mounted close to the source, i.e., the individual fingers. Whichfin-
gers detected tapping fingers from piezoelectric transducers, in one
embodiment placed on the fingertips and in another mounted on the
knuckles [35]. Similar in design, TapStrap is a consumer product
with 5 loosely coupled rings that embed IMUs [1]. Using them,
TapStrap implements a one-handed chorded keyboard through tap
detection on passive surfaces. Booth and Goldsmith’s wrist-worn 8-
sensor array along the bottom of the wrist detected gesture input [7],
although finger detection accuracies were below .55 across users.

Many scenarios benefit from unencumbered hands and fingers,
which has brought about alternative sensing approaches. For exam-
ple, Becker et al. used a Myo band worn by the elbow and detected
individual fingers from electromyography signals [4], reaching ac-
curacies up to .75 (within-user), which slipped below .50 across
users. Also using EMG, Benko et al. classified two fingers with .91
accuracy and demonstrated use-cases on touch tables [5].

Having studied the related work in these areas, we conclude that
previous approaches show the promise of finger-specific interaction.
However, they typically trade off convenience (i.e., positioning sen-
sors close to the fingers or requiring the user to wear a glove) with
accuracies that are suitable for reliably distinguishing input from
five fingers. We believe that TapID is an encouraging approach in
this regard, mounting sensors by the user’s wrist inside a convenient
and socially acceptable form factor. TapID reliably reaches high
cross-user detection accuracies after minimal refinements, which
adequately sets up our approach for interactive use.

2.3 Touch interaction in VR
Surface touch interaction has found interest in the Mixed Reality
communities. For the purpose of text entry in VR, a commercial
high-fps Optitrack system proved as a useful input platform with 23
motion-capture markers affixed to each hand [29].

Without a stationary multi-camera setup in an MR scenario, the
temptation has been to use the cameras built into headsets to simul-
taneously estimate hand poses and detect touch events. For example,
MRTouch combines the depth and infrared cameras in a Microsoft
Hololens for real-time surface touch detection [47] and discussed the
main challenges in their evaluation: the high rate of missed touches
(3.5%) and spurious extra touches (19%).

Detecting touch using cameras has been a long-standing chal-
lenge. On his Digital Desk, Wellner explored this ambition in the
early 90s [45], but concluded that reliable contact sensing required
surface instrumentation. Agarwal et al. detected touch locations and
moments of contact with overhead stereo cameras [2], discussing
how the noise from stereo depth causes erroneous proximity read-
ings. Wilson later introduced an approach that built on a single depth
camera, which provided more reliable detection and also scaled to
mobile scenarios and on-body input (e.g.,Imaginary Phone [19]).

These camera-based approaches share the benefit of recognizing
accurate touch locations, but all the struggle with noisy depth es-
timates for reliable event detection and their constraints on input
speed that is limited by camera framerates and applied filters. This
challenge is what we seek to complement with TapID, using wrist-
worn inertial sensors that deliver the missing piece of information
on rapid touch interaction: precise events and finger identification.

TapID also derives inspiration from Substitutional Reality, i.e.,
adopting passive affordances in the environment for VR applica-
tions [40]. Such affordances have been used to provide otherwise
missing haptic feedback in response to input events (e.g., Sparse Hap-
tic Proxy [9]). The settings that we envision TapID to be used in fol-
low our previous work on situating virtual reality interactions in a dif-
ferent physical reality (e.g., VRoamer [10] and Dreamwalker [48]).

3 TAPID WEARABLE DEVICE AND ELECTRONICS

TapID precisely detects taps on a surface and identifies the tapping
finger, made possible by the integration of our custom wrist-band
device. Users wear two such devices (Figure 1a), which then op-
erate independently per hand. Figure 4 shows our electronics plat-
form, which centers around a System-on-a-Chip (DA14695, Dialog
Semi) that samples all inertial sensors at a frequency of 1344 Hz and
streams the IMU data to a PC through a serial connection. TapID fea-
tures two low-power accelerometers (LIS2DH, STMicroelectronics)
embedded into a wrist strap through a flexible PCB as well as two
on-board accelerometers for testing and comparing different sensor
configurations. We cast TapID’s strap using Shore-32 silicone and
embedded all electronics during curing.

LIS2DH
Accelerometer B2

LIS2DH
Accelerometer B1

LIS2DH
Accelerometer A1

ADXL355
Accelerometer A2 10 mm

DA14695
System on a Chip

Figure 4: TapID electronics platform. The main PCB features a micro-
controller that reads out the two low-power IMUs that are mounted
on the ends of a flexible PCB. For comparison in our evaluation, two
additional IMUs are mounted on the main PCB.

time

1D convolutional layer
kernel: 3, stride: 1, padding: 1

batch normalization

1D max pooling
kernel: 2, stride: 2, padding: 0

leaky ReLU

1D average pooling
kernel: 4, stride: 1, padding: 0

dense layer softmax

TapID finger identification network

camera-based hand trackingIMU signals
2 sensors x 3 axes

TapID event detection (using RCS)

derivative & standardization VR app

n=256 n=256
n=1024 n=5n=512

conv. block

n=512

n=64 n=64

n=32 n=32

n=128 n=128

finger
probabilities

position of finger
with max probability,
time stamp, finger ID

TapID signal integration

fingertip
positions

 2 sensors
x 3 axes

x
y
z
x
y
z

 a,1
 a,1

 a,1
 b,1
 b,1

 b,1

x
y
z
x
y
z

 a,2
 a,2

 a,2
 b,2
 b,2

 b,2

x
y
z
x
y
zz

 a,128
 a,128

 a,128
 b,128
 b,128

 b,128

...

...

...

...

...

...

128 time steps

[0.9, 0.1, 0, 0, 0]

Figure 5: TapID’s processing pipeline. Our primary input is the continuous stream from two 3D accelerometers, from which TapID first detects the
occurrence of a tap using a rate-of-change score. Upon detection, we extract a window of 128 samples, centered on the tap event, and input it into
our neural network classifier to identify the tapping finger. Our architecture comprises five blocks of convolutional layers and two final linear layers
that feed into a softmax activation function, which renders a probability distribution over the fingers. We then combine the classification with our
secondary input: continuous hand tracking. Having determined which finger has caused the event, we retrieve its fingertip location and forward the
tap event to the VR application.

4 TAP EVENT PROCESSING PIPELINE

Our system detects and represents all tap events through a timestamp,
the identity of the finger that has caused the tap, and the 2D location
on the surface in world coordinates. The system passes this record
to the VR app whenever touch events occur. In this section, we
describe the three interdependent steps for determining each entry
as illustrated in Figure 5. This includes our signal processing for tap
detection, our machine learning-based identification pipeline, and
our combination with the hand tracking from the VR headset.

4.1 Tap event detection & timestamp calculation
To distinguish tap events from other arm and hand movements, we
select events by the sharp spikes that they generate in the accelerom-
eter signal. Rather than performing naı̈ve magnitude thresholding,
TapID accumulates the rate of change in the raw signals (RS) of all
accelerometer axes to calculate a rate-of-change score (RCS). To
this, we add an exponential decrease to focus on fast changes on the
signal only. TapID detects tap events using a threshold on RCS peak
prominence dependent on the last local minimum.

RCSt =
RCSt−1

1.6
+ ∑

sensors
∑
axes
|RSt −RSt−1| (1)

We derive the exact timestamp of a tap event as the highest RCS
spike in a window of 20 samples (15 ms) after a threshold has been
exceeded. After each event, our processing incurs a back-off period
of 200 ms before detecting fresh events. This prevents a single tap
from triggering multiple events while still allowing up to 600 input
events per minute when using both hands.

4.2 Tap event finger identification
Upon detecting a the occurrence of tap event including its refined
timestamp, TapIDforwards a symmetric window of raw accelerom-
eter samples around the event’s timestamp to our neural network
classifier to identify fingers. Our classifier estimates the likelihood
of each finger to have caused the recorded signal. Using supervised
learning, we train the network by adjusting its weights via back-
propagation to minimize the cross-entropy loss on a training dataset
that has a single finger label assigned to each recorded tap event.
Note that we merely train on five such classes, one for each finger,
creating a classifier that is independent of individual hands.

We observed the best performance on the given task with our clas-
sifier implemented as a multi-layer feed-forward 1D-convolutional
neural network following a VGG-style architecture [41]. Figure 5

shows our convolutional architecture, which is a suitable choice
given the fixed-length of the input window and the strength of convo-
lutional layers to capture local dependencies in a signal. To increase
the receptive field, we make use of a deeper network with smaller
kernels. Intuitively, this enables the network to extract more pow-
erful features due to the additional non-linearities between layers
compared to a shallow network with larger kernels. Specifically, the
network consists of five blocks, each made up of two convolutional
layers with a kernel size of 3 that are connected to a max pooling
layer to reduce the input along the time dimension by a factor of 2.
The convolutional blocks are followed by an adaptive average pool-
ing layer and two linear layers. The output of the final linear layer
feeds into a softmax activation function that estimates a probability
distribution over the five fingers of the hand. We represent the ac-
celerometer data in the time domain as an input tensor of dimensions
[stacked axes of sensors × window size], where the convolution is
applied over the time axis and the per-frame stacked sensor data are
treated as input channels.

We apply several data pre-processing steps to boost TapID’s
performance. Taking advantage of the symmetry between the left
and the right hand, we mirror the data of the left hand to receive
a comparable input signal from both hands. We swap the data of
the symmetrically arranged accelerometers and invert the x or y axis
depending on the sensor’s orientation. This reduces the variability of
the combined dataset and aids the learning process of our classifier,
which can now be applied to the signals from either wristband.

Next, we estimate the jerk experienced by each sensor by applying
the forward difference operator along each time axis. This operation
can be thought of as finding the discrete derivative of the signal,
which amplifies high-frequency components in the Fourier domain
that we argue contains the discriminative finger information we seek.
This step also reduces the lower-frequency artifacts caused by arm
and hand motions. Finally, we standardize the resulting segments
along the time dimension of each channel across the dataset.

The complete classification network comprises more than 2.1
million trainable parameters. We implemented the model in Pytorch
and trained it over 30 epochs with a batch size of 16, using the Adam
optimizer [28] with a learning rate of 10−4, ε = 10−8 and β =
(0.9,0.999). Furthermore, we experimented with different segment
sizes around the peak event and achieved the best performance
with a window length of 128 frames (∼95 ms). We optimized these
hyperparameters over a dataset spanning multiple users and sessions.

4.3 Combining hand tracking with TapID events
When using TapID in a widget-based VR user interface (e.g., those
using buttons, sliders, checkboxes, etc.), we need to retrieve the
location of a tap following TapID’s detection of its occurrence. To
achieve this, we complement TapID’s classification output with com-
modity hand tracking that is integrated into contemporary headsets.
Having determined which finger has caused a tap, we retrieve the fin-
gertip position from the set of tracked hands and assign it in TapID’s
tap event. If the tip of the detected finger is not within proximity of
a surface in VR, our system simply rejects detected events as inad-
vertent input. In our experiments, we found 30 mm to be a viable
maximum surface distance for reliable detection and rejection. Valid
surfaces that trigger an input event in VR include the user’s own
body, such that our system can detect on-body touch input when UI
elements are anchored to the user’s arm (Figure 1d). In such cases,
our system compares fingertip positions with the location of arm
surfaces, which we approximate from the 3D-tracked joint with a
constant radius (40 mm) plus the delta region mentioned above.

Our VR system is implemented using Unity’s 3D game engine
for rendering and Velt [15] for the overall data flow. An Oculus
Quest headset renders our VR applications and its SDK comes with
built-in inside-out tracking for headset positions and hand poses.

While we have found the tracking data from the SDK to have
sufficient accuracy for determining the user’s fingertip positions in
our experiments, it does not afford detecting touches on passive
surfaces with any practical reliability or on-body touch input with
any reliability using inside-out tracking alone. More severely, rapid
finger taps manifest themselves as shaking motions in the tracked
hands, though not in position updates that allow for touch detection.
Tracking such events becomes even less suitable when fingers are
partially occluded from the cameras’ perspective, for example when
finger is occluded by other fingers during a down motion of the hand.
We have also found that the fingertip positions slightly lag behind
the true finger positions, which is tolerable for retrieving positions
on the surface, but not for detecting touch input or retrieving the
exact timestamp of a touch event during interaction.

For those reasons, we merely extract fingertip positions from
the hand tracking, but rely on TapID for detecting tap events and
revealing the tapping finger. Our system then triggers the event at
the 2D position obtained from projecting the fingertip position onto
the respective surface where the UI is situated.

4.4 Pipeline latency
Our combination of sensing and VR-enabled hand tracking intro-
duces several sources of latency. The continuous hand tracking
itself entails some latency, which depends on the VR device and the
implemented hand tracking approach.

With regard to the latency incurred by our own processing, the
total latency from the moment of the physical tap to displaying its
effect in Unity is approximately 130 ms. We estimated this value by
manually counting frames in high-frequency video recordings. This
duration encompasses the latency caused by all hardware operation,
communication, processing, and output.

We empirically determined the latency of TapID’s sensing, on-
board processing, and communication pipeline, which averaged out
to ∼10 ms. The machine learning-based classification including our
buffered data acquisition of each tap event adds 50–60 ms. Thus, the
latency for detecting a tap and identifying the finger comprises:

1. Data in sensor FIFO: 3 ms (max: 6 ms)

2. SoC processing and serial transmission to host computer: 3 ms

3. Tap event refinement (waiting for highest amplitude): 15 ms

4. Buffer until the data window is complete: 47 ms (64 samples)

5. Neural network inference time 2 ms (GeForce GTX 1050 Ti)

B1 B2
A1 A2 A1

TAPID FITBIT SMARTWATCH
configurations for comparison only

Figure 6: By default, TapID derives its signal from the IMUs B1,B2,
which are embedded inside the flexible silicone strap at either side
of the wrist (TAPID configuration). For comparison in our evaluation,
we included the two IMUs A1,A2 on the main PCB akin to FITBIT’s
Charge [43]. In the SMARTWATCH configuration, only A1 is active.
Lastly, we used ALL 4 IMUs as a baseline for comparison (not shown).

Note that Steps 3 and 4 overlap by around 10 ms on average,
as the refined peak usually lies at the beginning of the refinement
window. In addition, the latency of transmitting data through serial
depends on buffer settings on the host computer.

Taken together, our combination of low-latency tap input with
inside-out fingertip tracking is what uniquely enables users to reli-
ably interact with VR applications through touch, using the rapid
input they know from regular touch devices. We demonstrate several
use-cases that leverage our low-latency approach in Section 6.

5 TECHNICAL EVALUATION

The goal of this evaluation was to verify our sensing principle and
signal processing approach of detecting finger tap events and iden-
tifying the finger causing it. We also aimed to determine to what
extent wrist-mounted accelerometers in different locations and com-
binations contribute to the accuracy of our method.

For this purpose, we compared the F1 scores of classifying inertial
data in the three configurations shown in Figure 6: TAPID (two
accelerometers embedded in the elastic silicone strap), FITBIT (two
accelerometers rigidly mounted on the main PCB), SMARTWATCH (a
single low-noise board-mounted accelerometer). We also report the
F1 scores for a baseline where ALL 4 sensors were simultaneously
used. The second purpose of the data capture was to establish a
corpus for training the cross-person tap classifier that we used for
online operation in our demo apps.

We conducted the evaluation in two parts; In Part 1, we investi-
gated the accuracy of tap event detection. In Part 2, we assessed
the accuracies achieved by our finger identification network. Both
parts of the evaluation shared the same task and procedure, but were
conducted with different participants.

5.1 Task
Participants comfortably sat in an office chair in a table setting,
resting their lower arms on the edge of the table, and repeatedly
tapped on the tabletop with the finger specified by the experimenter.
No other instructions were provided and participants controlled their
own tapping frequency, intensity, and tapping locations, finger and
hand motions. The experimenter was careful to simply use the word
‘tap’ to refer to all touch events during the experiment.

5.2 Procedure
The study started with a brief introduction of TapID, which the
experimenter related to a regular smartwatch. The experimenter

thumb index middle ring pinky macro avg (± σ) thumb index middle ring pinky macro avg (± σ) thumb index middle ring pinky macro avg (± σ)

TAPID 0.97 0.92 0.89 0.91 0.94 0.93 (± 0.06) 0.92 0.86 0.83 0.82 0.91 0.87 (± 0.09) 0.95 0.91 0.87 0.89 0.91 0.91 (± 0.07)

FITBIT 0.96 0.92 0.89 0.90 0.93 0.92 (± 0.05) 0.89 0.85 0.70 0.71 0.84 0.80 (± 0.12) 0.96 0.92 0.85 0.83 0.90 0.89 (± 0.07)

SMARTWATCH 0.97 0.92 0.89 0.87 0.92 0.91 (± 0.05) 0.91 0.86 0.72 0.73 0.83 0.81 (± 0.10) 0.95 0.88 0.86 0.82 0.92 0.89 (± 0.08)

All 4 sensors 0.97 0.94 0.91 0.91 0.94 0.93 (± 0.05) 0.92 0.89 0.77 0.81 0.90 0.86 (± 0.10) 0.96 0.93 0.85 0.91 0.94 0.92 (± 0.08)

Within-person F1 scores per finger Cross-person F1 scores per finger Cross-person F1 scores - 10 tap refinementSensor
configuration

Figure 7: F1 scores for cross-session (within-person), cross-person, and cross-person with 10-tap refinement evaluations. Mean F1 scores are
broken into individual fingers and the mean and standard deviation (σ) of the Macro F1 score across participants.

thumb index middle ring pinky
Predicted label

thumb

index

middle

ring

pinky

T
ru

e
la

b
e

l

.974 .007 .004 .009 .007

.013 .922 .050 .011 .004

.010 .035 .894 .043 .018

.008 .010 .045 .911 .026

.002 .023 .009 .024 .943

Cross-session confusion matrix

thumb index middle ring pinky
Predicted label

thumb

index

middle

ring

pinky

T
ru

e
la

b
el

.926 .016 .002 .019 .038

.021 .854 .074 .029 .022

.015 .080 .849 .047 .010

.031 .020 .108 .801 .041

.030 .013 .008 .025 .924

Cross-person confusion matrix

Figure 8: Left: Normalized confusion matrix for 3-fold cross-validation
for cross-session identification. Right: 18-fold cross-validation for
cross-person identification.

then noted down the participant’s age and gender and measured
their wrist circumference. Throughout the study, the experimenter
instructed participants on which arm to wear the band during each
session and which finger to use for tapping each round.

For each round, participants put the TapID device on the spec-
ified wrist and repeated 30 taps with each finger, as instructed,
before taking off the band again. A block in each session con-
sisted of 30 taps for each finger on either hand, totaling 30×
5 fingers× 2 arms = 300 taps per block. Participants performed
three such blocks with short breaks in between and produced a total
of 300 taps×3 blocks = 900 taps. Each participant completed the
study in under 20 minutes.

5.3 Participants

We recruited 18 participants (14 male, 4 female, ages 19–57, mean =
28.4 years). Participants’ average wrist circumference was 168 mm
(SD = 10 mm, min = 146 mm, max = 185 mm). Each participant
received a small gratuity for their time. Of the 18 participants, 4
(1 female, ages 23–29, mean = 25.3 years) additionally took part
in evaluating the performance of our tap detection. Their wrist
circumferences ranged from 158 mm to 176 mm.

1

0

0

1

2
–1

0 0.2 0.4 0.6 time (s)

audio amplitude

RCS (g)

Figure 9: Our evaluation apparatus and procedure. Left: A seated
participant, resting his lower arm on the table. The surface-mounted
stethoscope served ground-truth for tap events. Right: The resulting
audio signal and our Rate-of-Change score to detect events.

thumb index middle ring pinky
Predicted label

thumb

index

middle

ring

pinky

Tr
ue

 la
be

l

.960 .002 .007 .013 .019

.025 .888 .073 .010 .004

.008 .025 .882 .076 .009

.012 .006 .044 .925 .013

.013 .011 .005 .065 .906

Cross-person confusion matrix
(10 taps per finger for refinement)

0 part
icip

an
ts

4 p
art

icip
an

ts

8 part
icip

an
ts

12
part

icip
an

ts

17
part

icip
an

ts

Number of participants in training set

0 taps

1 taps

10 taps

30 taps

60 taps

N
um

be
r o

f w
ith

in
-p

er
so

n
ta

ps
 p

er
 fi

ng
er

.08 .65 .73 .82 .87

.17 .66 .75 .82 .86

.72 .86 .89 .91 .91

.81 .91 .92 .93 .94

.93 .96 .95 .96 .96

Cross-person F1 scores with refinement

Figure 10: Cross-person refinement accuracy. Left: F1 scores depend-
ing on training and refinement set sizes. Right: Normalized confusion
matrix with 18-fold cross-validation with 10 within-person taps per
finger for refinement.

5.4 Evaluating tap event detection
To record ground truth annotations for surface taps, we recorded
a surface acoustic signal using a stethoscope that was covered and
taped to the tabletop (Figure 9). During the evaluation, participants
kept quiet to avoid introducing artifacts into the recorded signal.

This sub-evaluation resulted in a total of 3600 tap events. Using
our RC score as a measure (Equation 1), our tap detection achieved
an accuracy of F1,tap = .996 (precision 99.7%, recall 99.5%) in the
TAPID configuration. For FITBIT and SMARTWATCH, the detection
achieved F1,tap = .996 as well.

5.5 Evaluating tap event identification
In this sub-evaluation, ground-truth resulted from the experimenter’s
instructions which finger to use for tapping, which the experimenter
logged in our data collection tool for post-hoc label assignment.

5.5.1 Results in TAPID configuration
We calculate the average F1 score for each finger across all partici-
pants. Moreover, we report the mean and the standard deviation of
the Macro F1 score across all participants, which treats all fingers
as being equally important by taking the unweighted mean across
class-wise F1 scores.

Cross-session identification accuracy: We split the recorded data
by participant and block. For each participant, we performed 3-fold
cross-validation, using two blocks for training and one block for
testing while ignoring all data from other participants. Across all
participants, the accuracy was, on average, F1,finger = .93 (SD=0.06).

Cross-person identification accuracy: We performed 18-fold
cross-validation, testing on each participant’s events and training on
all other participants. The accuracy was F1,finger = .87 (SD=0.09).

Cross-person identification accuracy with refinement: In addition
to pure cross-person testing, we assessed the impact of refinement
with individual tap events from a participant’s set on the cross-person
identification accuracy F1,finger. Simultaneously, we evaluated the
impact of the size of the training dataset on the average cross-person
identification accuracy.

Fig. 10 shows the mean F1 scores across participants depending
on number of random taps used for refinement (rows) and depending
on number of participants’ data used for training (columns). For
this evaluation, we first trained the classifier for 30 epochs on the
recorded taps of (i) 0, (ii) 4, (iii) 8, (iv) 12 and (v) 17 randomly
drawn participants—excluding the person in the test set. We then
fine-tuned the network for another 30 epochs using only the first
(a) 1, (b) 10, (c) 30, and (d) 60 tap events per finger of the tested
participant and removed these samples from the test set. We tested
the refined classifier on the remaining blocks for that participant.

After fine-tuning, our trained network produced F1 scores that
rose with the number of participants in the training set as well as
with the number of refinement taps. With 18-fold cross-validation
and training with (iv) all 17 participants’ training data, our clas-
sifier achieves a mean F1 score of (a) F1,finger = .86 (SD=0.07),
(b) F1,finger = .91 (SD=0.07), (c) F1,finger = .94 (SD=0.05), and
(d) F1,finger = .96 (SD=0.05) after corresponding refinement.

5.5.2 Results in other configurations

For our baseline comparisons, Figure 7 lists all the scores achieved
with the corresponding sensor configurations alongside a baseline us-
ing ALL 4 IMUs. Compared to the FITBIT and SMARTWATCH con-
figurations, TAPID produced consistently higher F1 scores. In com-
parison, using ALL 4 IMUs for training and testing added marginal
improvements over TAPID and only in some of the cases.

5.6 Discussion

The evaluation confirmed the validity of our sensing principle and
our implementation on a wrist-worn device to capture body-coupled
events. It also confirmed the TAPID configuration of our prototype,
embedding two low-cost, low-power IMUs in the silicone strap.

Regarding the tap detection, the accuracy TapID achieved is high
enough for practical purposes, but it also is in FITBIT and SMART-
WATCH configuration. This confirms recent results in related efforts
(e.g., [18]), though with IMU sensors positioned at the wrist for
unencumbered hands instead of placing them on the fingers. One
trade-off remains in our tap detection: Decreasing the back-off pe-
riod allows for faster interactions but increases the likelihood that
one (strong) tap produces two events (i.e., one false positive).

As for the performance of our classifier to identify individual
fingers, unsurprisingly we saw the best cross-person accuracy when
training with the largest amount possible, refined with person-
specific training data, reaching F1 scores of up to .96 this way (Fig-
ure 10). What is notable, however, is that a single person-specific
calibration procedure holds across recording sessions, setting up
novel users with a one-time on-boarding step to reach an accuracy of
.96. Even by just fine-tuning with 10 samples, which can easily be
recorded in under a minute, TapID identifies the correct finger with
an accuracy of F1,finger = .91, notably for any given touch event.

Without refinement, however, cross-person classification achieves
an accuracy of F1,finger = .87, which we believe still has room for
improvement to rise to practical levels. That said, this F1 score
compares favorably to results achieved in the related work with
comparable setups with unencumbered fingers and hands (e.g., [4,7])
for cross-person classification. Interestingly, our method achieves
the largest performance increase in TAPID configuration over the
FITBIT and SMARTWATCH configurations (Figure 7), while person-
specific refinement narrows the gap between configurations.

Taking a look at the performance of individual fingers, our method
most reliably identifies thumb and pinky taps, while distinguishing
between middle and ring fingers proved to be more challenging.
While all finger F1 scores are > .89 for cross-session, the ring finger
drops to .82 for cross-person F1 scores. The right confusion matrix
in Fig. 8 illustrates that the model especially struggles to differentiate
between the index, middle and ring finger.

Refinement with just 10 taps, however, leads to an improved dis-
crimination between the three inner fingers of the hand and recovers
all finger’s F1 scores to values > .87 (see Figure 10 and Figure 7).

Inspecting results in detail, physical measures such as a person’s
wrist circumference may impact the classification accuracy. Perform-
ing cross-validation on the 9 participants with a wrist circumference
closest to the average of our population, the cross-person classifica-
tion without refinement rises to F1,finger = .92 for TAPID (compared
to F1,finger = .82 when using the other half of our population for
validation). Similar trends occurred for all sensor configurations and
one reason may be the constant distance between IMUs. Based on
these results, we hypothesize that training data from more partic-
ipants with smaller and larger wrists will decrease this effect but
strengthen our cross-person accuracy without refinement.

6 USE CASES

TapID can be used for complementary high-fidelity input in many
VR scenarios. In this section, we first describe broader scenarios
and envisioned use cases for TapID. We then showcase several apps
that we implemented to demonstrate the usefulness of our approach.

6.1 Scenarios

In typical VR scenarios, users interact with non-tangible objects,
which lack all physical affordances and, thus, require interaction that
is mediated through hand-held controllers or mere hands. However,
mid-air input—especially in the case of prolonged interaction—often
triggers fatigue, because the lack of physical affordances leaves no
options for rest [40]. We argue that, therefore, the main success of
VR applications so far has been in gaming that engages the whole-
body (e.g., Beat Saber [3]). In contrast, even the most recent produc-
tivity applications that attempt to replicate office environments (e.g.,
Facebook Infinite Spaces [14]) focus on content consumption rather
than content creation. We believe this is a direct result of the inade-
quate interaction modality that is mid-air input, often retrofit to an
interface that was designed for keyboards, mice, and not least touch.
In VR, no devices currently exist to facilitate such interaction other
than the handheld controllers, which induce short-term novelty, but
have so far not been convincing in enabling long-term productivity,
especially when compared to conventional desktop input devices.

We believe that the potential of immersive VR productivity apps
remains untapped if the input modality is not effective, precise,
and non-fatiguing. Much of productivity work is characterized by
sustained interaction, often in the form of fluid and rapid input,
often bimanual, and often involving tools to accomplish tasks. Our
prototype TapID now offers an alternative interaction concept, which
is inspired by interaction in physical offices, but adapted to support
potentially infinite virtual spaces of content in VR.

Besides productivity-based scenarios, TapID can also be useful
in more playful use-cases that differ from previous (mostly mid-air
based) VR experiences. For instance, TapID enables VR games that
require surface input with exact timing (e.g., rhythm games).

6.2 Application prototypes

We implemented several applications that showcase our unique com-
bination of rapid tap interaction in VR through TapID in conjunction
with spatial interfaces mediated by a VR headset. In these demon-
strations, the user is situated in VR and surrounded by content typical
in desktop and touch user interfaces, such as photo collections and
web browsers. To facilitate interaction with the user interface, we
developed a series of tapping-based virtual input devices that the
user can open and position by tapping the desired location on the
surface with specific fingers. For instance, the left pinky finger
can summon arrow keys while the the right pinky finger triggers
a numeric keypad to appear and the thumb can summon a simple
keyboard between both hands.

a b c dpiano playingnumeric padauthoringphoto sorting

Figure 11: Our demo applications showcase TapID’s integration with VR scenes and hand-based interaction using different surface widgets:
(a) dragging and resizing photos including a per-finger command input widget below the left hand, (b) editing rich-text documents with keyboard
input including text cursor navigation, (c) a numeric keypad for inputting numbers and operations, and (d) virtual piano keys for precise input.

While our applications show hands during interaction, we render
fingertips and touches using colored spheres during ego-centric
use, showing a line that projects down to the surface and following
previous UI recommendations [17]. Screenshots of our applications
are shown in Figures 1 and 11.

Photo sorting: Familiar from multi-touch devices, we imple-
mented a Photo sorting app as shown in Figure 11a). The app uses
TapID’s reliable tap detection to trigger drag events for moving and
resizing pictures. A command input menu enables step-wise resizing
and rotating images. With our approach, we can easily assign these
commands to each finger. This prototype also works without a table
in an on-body configuration with one wristband worn on one arm
and with the user’s other arm as tapping surface (see Figure 1d).

Document editing: We designed a simple keyboard input widget
to add text to documents (Figure 11b), complementing the use of
existing document authoring tools (e.g., Microsoft Word, Power-
Point). Words can be selected through double-tap, e.g., to change
their format. Additionally, our arrow key virtual input (summoned
with left pinky finger) aids in quickly adjusting the text cursor’s de-
sired location. This demonstrates our support of conventional touch
capabilities, seamlessly integrating our finger-specific tapping-based
virtual input devices with operating system-provided controls and
existing applications that were designed for touch.

Number input: Users can open a virtual numeric keypad widget
to type in numbers and operations as shown in Figure 11c. This
widget conveniently fits below the hand, so that users can quickly
input numbers using all five fingers of one hand. This affordance is
useful, for example, when summoning and using a calculator as part
of the interaction flow in a user interface.

Piano: Our final demonstration is a virtual piano app as shown in
Figure 11d. This VR piano optimally leverages TapID for temporally
precise input and enables users to hit piano keys using any finger.
The combination of visual feedback in VR, the passive haptic feed-
back of the surface, and the low latency of our approach uniquely
enables playing this virtual instrument while preserving the exact
beat of the user’s tapping input.

7 LIMITATIONS

Before reaching production-level performance, a couple of limita-
tions remain in our current implementation. Apart from the currently
necessary user-specific refinements to achieve reliable accuracies,
we have not tuned or evaluated our method on its capability to iden-
tify multi-touch events—at this time, only individual fingers are
detected, though with simultaneous bimanual input. A second as-
sumption behind our current implementation is the use of a table or
the user’s own body as a passive input surface We did not experi-
mentally and quantitatively evaluate the detection accuracy of our
current implementation on surfaces other than office tables made
from coated wood. We also did not explicitly vary or control tapping
strength. We have tested and evaluated our system in a stationary and
seated setting, without accounting for body motion during use (e.g.,

in mobile scenarios). With respect to supported input poses, TapID
detects and identifies taps with bent fingers. In this case, however,
the derived input location may be inaccurate or even unavailable
and thus unknown due to our current reliance on the input locations
reported from the headset. For our current system to work, the hand
producing the input event must be in the tracking area of the VR
headset, otherwise input events on the wrist-worn sensor will be
dismissed as inadvertent. This entails that, currently, the user needs
to look at the content they interact with in VR, including text input
on the shown keyboard, which, thus, does not support eyes-free op-
eration. All interaction is also required to be direct, which previous
work has found to lead to higher error in 3D scenes [39], but work
by Knierim et al. on text input in VR showed to be beneficial, as
experienced typists improved their typing performance by seeing
their hands and the keyboard in VR [29].

Regarding the suitability of our approach to be implemented
on commodity smartwatches, we acknowledge that it may appear
unreasonable for a user to wear two smartwatches, which our current
approach requires for bimanual operation. However, much like
currently used controllers for input, it may seem fathomable that
future users put on two small wristbands for all interaction in VR.
Finally, our current inference pipeline relies on a moderate GPU and
is, at this point, not suitable for embedded processing.

8 CONCLUSIONS

We have presented TapID, a wearable sensing device that comple-
ments camera-based hand tracking to bring rapid touch interaction
to VR systems. Our approach, thus, establish the basis for reliable
and prolonged interaction during continuous use, where users may
rest their arms and hands on a surface. For each tap on a passive
surface, such as a tabletop, TapID reliably detects the event and
identifies which finger has been used for the touch. This allows
VR systems that track the user’s hands in full to add the missing
key element: rapid surface contact detection that additionally disam-
biguates which finger caused the action, such that the VR app can
trigger the input event in the application.

In our evaluation with 18 participants, TapID produced convinc-
ing accuracies for tap detection and finger identification in a cross-
session setting. Cross-validation testing with a classifier that was
trained on just cross-person data showed a drop in accuracy, from
which TapID’s can recover, however, with a small number of a user’s
tap events for refinement training.

Overall, we believe that the approach we have outlined in this
paper is a viable complement for existing VR systems that allows the
familiar input modality that is touch input to transfer to spatial VR
systems, potentially even during everyday scenarios. A promising
insight in this regard is the evaluation of our method in FITBIT con-
figuration, using only TapID’s board-mounted IMU sensors as found
in existing commodity wearables [43], which produced comparable
accuracies when implementing our method.

REFERENCES

[1] 2020. Tap Strap 2: All-In-One Wearable Keyboard, Mouse & Air
Gesture Controller. (2020). https://www.tapwithus.com/

[2] Ankur Agarwal, Shahram Izadi, Manmohan Chandraker, and Andrew
Blake. 2007. High precision multi-touch sensing on surfaces using
overhead cameras. In Second Annual IEEE International Workshop
on Horizontal Interactive Human-Computer Systems (TABLETOP’07).
IEEE, 197–200.

[3] Beat Games. 2018. Beat Saber. (2018). https://

store.steampowered.com/app/620980/Beat_Saber, Accessed:
1/25/2021.

[4] Vincent Becker, Pietro Oldrati, Liliana Barrios, and Gábor Sörös. 2018.
Touchsense: classifying finger touches and measuring their force with
an electromyography armband. In Proceedings of the 2018 ACM Inter-
national Symposium on Wearable Computers. 1–8.

[5] Hrvoje Benko, T Scott Saponas, Dan Morris, and Desney Tan. 2009.
Enhancing input on and above the interactive surface with muscle sens-
ing. In Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces. 93–100.

[6] Riley Booth and Peter Goldsmith. 2017. Detecting finger gestures with
a wrist worn piezoelectric sensor array. In 2017 IEEE international
conference on systems, man, and cybernetics (SMC). IEEE, 3665–
3670.

[7] Riley Booth and Peter Goldsmith. 2018. A wrist-worn piezoelectric
sensor array for gesture input. Journal of Medical and Biological
Engineering 38, 2 (2018), 284–295.

[8] Wenqiang Chen, Lin Chen, Yandao Huang, Xinyu Zhang, Lu Wang,
Rukhsana Ruby, and Kaishun Wu. 2019. Taprint: Secure text input
for commodity smart wristbands. In The 25th Annual International
Conference on Mobile Computing and Networking. 1–16.

[9] Lung-Pan Cheng, Eyal Ofek, Christian Holz, Hrvoje Benko, and An-
drew D Wilson. 2017. Sparse haptic proxy: Touch feedback in virtual
environments using a general passive prop. In Proceedings of the 2017
CHI Conference on Human Factors in Computing Systems. 3718–3728.

[10] Lung-Pan Cheng, Eyal Ofek, Christian Holz, and Andrew D Wilson.
2019. VRoamer: Generating On-The-Fly VR Experiences While
Walking inside Large, Unknown Real-World Building Environments.
In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces
(VR). IEEE, 359–366.

[11] HTC Corporation. 2016. Vive, Discover Virtual Reality Beyond Imagi-
nation. (2016). https://www.vive.com/us/

[12] Microsoft Corporation. 2019. Microsoft HoloLens, Mixed Reality
Technology for Business. (2019). https://www.microsoft.com/
en-us/hololens

[13] Macarena Espinilla, Javier Medina, Alberto Salguero, Naomi Irvine,
Mark Donnelly, Ian Cleland, and Chris Nugent. 2018. Human Activity
Recognition from the Acceleration Data of a Wearable Device. Which
Features Are More Relevant by Activities?. In Multidisciplinary Digital
Publishing Institute Proceedings, Vol. 2. 1242.

[14] Facebook. 2020. Infinite Office (trailer). (2020). https://www.

youtube.com/watch?v=5_bVkbG1ZCo, Accessed: 1/25/2021.
[15] Andreas Fender and Jörg Müller. 2018. Velt: A Framework for Multi

RGB-D Camera Systems. In Proceedings of the 2018 ACM Interna-
tional Conference on Interactive Surfaces and Spaces (ISS ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, 73–83. DOI:
http://dx.doi.org/10.1145/3279778.3279794

[16] Jun Gong, Aakar Gupta, and Hrvoje Benko. 2020. Acustico: Surface
Tap Detection and Localization using Wrist-based Acoustic TDOA
Sensing. In Proceedings of the 33rd Annual ACM Symposium on User
Interface Software and Technology. 406–419.

[17] Jens Grubert, Lukas Witzani, Eyal Ofek, Michel Pahud, Matthias
Kranz, and Per Ola Kristensson. 2018. Effects of hand representations
for typing in virtual reality. In 2018 IEEE Conference on Virtual Reality
and 3D User Interfaces (VR). IEEE, 151–158.

[18] Yizheng Gu, Chun Yu, Zhipeng Li, Weiqi Li, Shuchang Xu, Xiaoying
Wei, and Yuanchun Shi. 2019. Accurate and Low-Latency Sensing
of Touch Contact on Any Surface with Finger-Worn IMU Sensor. In
Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology. 1059–1070.

[19] Sean Gustafson, Christian Holz, and Patrick Baudisch. 2011. Imaginary
phone: learning imaginary interfaces by transferring spatial memory
from a familiar device. In Proceedings of the 24th annual ACM sympo-
sium on User interface software and technology. 283–292.

[20] Chris Harrison, Desney Tan, and Dan Morris. 2010. Skinput: appro-
priating the body as an input surface. In Proceedings of the SIGCHI
conference on human factors in computing systems. 453–462.

[21] Steven Henderson and Steven Feiner. 2010. Exploring the benefits of
augmented reality documentation for maintenance and repair. IEEE
transactions on visualization and computer graphics 17, 10 (2010),
1355–1368.

[22] Juan David Hincapié-Ramos, Xiang Guo, Paymahn Moghadasian,
and Pourang Irani. 2014. Consumed endurance: a metric to quantify
arm fatigue of mid-air interactions. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 1063–1072.

[23] Christian Holz and Patrick Baudisch. 2013. Fiberio: a touchscreen that
senses fingerprints. In Proceedings of the 26th annual ACM symposium
on User interface software and technology. 41–50.

[24] Brent Edward Insko, M Meehan, M Whitton, and F Brooks. 2001.
Passive haptics significantly enhances virtual environments. Ph.D.
Dissertation. University of North Carolina at Chapel Hill.

[25] Sujin Jang, Wolfgang Stuerzlinger, Satyajit Ambike, and Karthik Ra-
mani. 2017. Modeling cumulative arm fatigue in mid-air interaction
based on perceived exertion and kinetics of arm motion. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems.
3328–3339.

[26] Majid Janidarmian, Atena Roshan Fekr, Katarzyna Radecka, and
Zeljko Zilic. 2017. A comprehensive analysis on wearable acceleration
sensors in human activity recognition. Sensors 17, 3 (2017), 529.

[27] Wenchao Jiang and Zhaozheng Yin. 2015. Human activity recognition
using wearable sensors by deep convolutional neural networks. In
Proceedings of the 23rd ACM international conference on Multimedia.
1307–1310.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 (2014).

[29] Pascal Knierim, Valentin Schwind, Anna Maria Feit, Florian Nieuwen-
huizen, and Niels Henze. 2018. Physical keyboards in virtual reality:
Analysis of typing performance and effects of avatar hands. In Pro-
ceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. 1–9.

[30] Luv Kohli. 2010. Redirected touching: Warping space to remap passive
haptics. In 2010 IEEE Symposium on 3D User Interfaces (3DUI). IEEE,
129–130.

[31] Yuki Kubo, Yuto Koguchi, Buntarou Shizuki, Shin Takahashi, and
Otmar Hilliges. 2019. AudioTouch: Minimally Invasive Sensing of
Micro-Gestures via Active Bio-Acoustic Sensing. In Proceedings of
the 21st International Conference on Human-Computer Interaction
with Mobile Devices and Services. 1–13.

[32] Gierad Laput, Robert Xiao, and Chris Harrison. 2016. Viband: High-
fidelity bio-acoustic sensing using commodity smartwatch accelerome-
ters. In Proceedings of the 29th Annual Symposium on User Interface
Software and Technology. 321–333.

[33] Facebook Technologies LLC. 2020. Oculus Quest 2: Our Most Ad-
vanced All-in-One VR Headset. (2020). https://www.oculus.com/
quest-2/

[34] Nicolai Marquardt, Johannes Kiemer, and Saul Greenberg. 2010. What
caused that touch? expressive interaction with a surface through
fiduciary-tagged gloves. In ACM International Conference on Interac-
tive Tabletops and Surfaces. 139–142.

[35] Damien Masson, Alix Goguey, Sylvain Malacria, and Géry Casiez.
2017. Whichfingers: identifying fingers on touch surfaces and key-
boards using vibration sensors. In Proceedings of the 30th Annual ACM
Symposium on User Interface Software and Technology. 41–48.

[36] Abdulmajid Murad and Jae-Young Pyun. 2017. Deep recurrent neural
networks for human activity recognition. Sensors 17, 11 (2017), 2556.

[37] Francisco Javier Ordóñez and Daniel Roggen. 2016. Deep convolu-
tional and lstm recurrent neural networks for multimodal wearable
activity recognition. Sensors 16, 1 (2016), 115.

[38] Yilei Shi, Haimo Zhang, Jiashuo Cao, and Suranga Nanayakkara. 2020.
VersaTouch: A Versatile Plug-and-Play System that Enables Touch

Interactions on Everyday Passive Surfaces. In Proceedings of the Aug-
mented Humans International Conference. 1–12.

[39] Adalberto L Simeone and Hans Gellerseny. 2015. Comparing indi-
rect and direct touch in a stereoscopic interaction task. In 2015 IEEE
Symposium on 3D User Interfaces (3DUI). IEEE, 105–108.

[40] Adalberto L Simeone, Eduardo Velloso, and Hans Gellersen. 2015.
Substitutional reality: Using the physical environment to design virtual
reality experiences. In Proceedings of the 33rd Annual ACM Confer-
ence on Human Factors in Computing Systems. 3307–3316.

[41] Karen Simonyan and Andrew Zisserman. 2014. Very deep convo-
lutional networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556 (2014).

[42] Arthur Tang, Charles Owen, Frank Biocca, and Weimin Mou. 2003.
Comparative effectiveness of augmented reality in object assembly. In
Proceedings of the SIGCHI conference on Human factors in computing
systems. 73–80.

[43] Leland Teschler. 2016. Teardown: Inside the Fitbit
Charge. (2016). https://www.microcontrollertips.com/

inside-fitbit-charge/

[44] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu.
2019. Deep learning for sensor-based activity recognition: A survey.
Pattern Recognition Letters 119 (2019), 3–11.

[45] Pierre Wellner. 1993. Interacting with paper on the DigitalDesk. Com-
mun. ACM 36, 7 (1993), 87–96.

[46] Andrew D Wilson. 2010. Using a depth camera as a touch sensor. In
ACM international conference on interactive tabletops and surfaces.
69–72.

[47] Robert Xiao, Julia Schwarz, Nick Throm, Andrew D Wilson, and
Hrvoje Benko. 2018. MRTouch: adding touch input to head-mounted
mixed reality. IEEE transactions on visualization and computer graph-
ics 24, 4 (2018), 1653–1660.

[48] Jackie Yang, Christian Holz, Eyal Ofek, and Andrew D Wilson. 2019.
Dreamwalker: Substituting real-world walking experiences with a
virtual reality. In Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. 1093–1107.

[49] Naoya Yoshimura, Takuya Maekawa, Daich Amagata, and Takahiro
Hara. 2018. Preliminary Investigation of Fine-Grained Gesture Recog-
nition With Signal Super-Resolution. In 2018 IEEE International Con-
ference on Pervasive Computing and Communications Workshops (Per-
Com Workshops). IEEE, 484–487.

[50] Ming Zeng, Le T Nguyen, Bo Yu, Ole J Mengshoel, Jiang Zhu, Pang
Wu, and Joy Zhang. 2014. Convolutional neural networks for hu-
man activity recognition using mobile sensors. In 6th International
Conference on Mobile Computing, Applications and Services. IEEE,
197–205.

[51] Cheng Zhang, Anandghan Waghmare, Pranav Kundra, Yiming Pu,
Scott Gilliland, Thomas Ploetz, Thad E Starner, Omer T Inan, and
Gregory D Abowd. 2017. Fingersound: Recognizing unistroke thumb
gestures using a ring. Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies 1, 3 (2017), 1–19.

[52] Yang Zhang, Wolf Kienzle, Yanjun Ma, Shiu S Ng, Hrvoje Benko,
and Chris Harrison. 2019. ActiTouch: Robust Touch Detection for
On-Skin AR/VR Interfaces. In Proceedings of the 32nd Annual ACM
Symposium on User Interface Software and Technology. 1151–1159.

	Introduction
	Rapid touch interaction on passive surfaces in VR
	Contributions

	Related Work
	Wearable sensors and body-coupled events
	Finger identification during touch
	Touch interaction in VR

	TapID Wearable device and electronics
	Tap event processing pipeline
	Tap event detection & timestamp calculation
	Tap event finger identification
	Combining hand tracking with TapID events
	Pipeline latency

	Technical evaluation
	Task
	Procedure
	Participants
	Evaluating tap event detection
	Evaluating tap event identification
	Results in TapID configuration
	Results in other configurations

	Discussion

	Use cases
	Scenarios
	Application prototypes

	Limitations
	Conclusions

